Modeling and Simulation Comparison between IKONOS, Landsat 5, and Landsat 7 MSI Systems

Dr. Andy Korb and Tim Coffey, SAIC

March 7, 2002

Outline- Comparison of MSI Systems

- What we're doing, and why
- Methodology
- Spectral Response Differences
- Surface Reflectances
- Atmospheric Terms
- TOA Radiances
- Band Convolved Band Comparisons
- How these simulations are useful

What We're Doing, and Why

- What we're doing: Simulating And Comparing Spectral Sensor Measurements
 - Incorporates Physical Models and Best Available Measurements
 - Provides Control Over Scene Materials, Surface Illumination, Atmospheric Parameters, Viewing Geometry, and Sensor Specifications

• Why:

- Gain Understanding of How Same Materials Will Appear to Different Sensors
- Gain Understanding of How Same Materials Will Appear Under Different Conditions (Time of Day, Day of Year, Atmospheric Conditions, Viewing Geometry, etc.)

What We're Doing, and Why

- Why: (Continued)
 - Gain Understanding of How Sensor Characteristics (Band Placement, Spectral Resolution, Number of Bands, Signal to Noise Ratio, etc.) Impact on Resulting Data
 - Generate Synthetic Data Cubes From Theoretical or Not-Yet-Built Sensors For Evaluation
- Supports NIMA's (National Imagery and Mapping Agency) Participation in the Joint Agency Commercial Imagery Evaluation (JACIE) Team

Methodology

- Modtran 3.7, embedded in the Spectral Architecture Evaluation Software (SAE tool) to calculate downwelling sun radiances- direct and diffuse (can be calculated as functions of elevation and azimuthal angles), atmospheric transmittances for incoming and outgoing paths, and upwelling solar scattered radiances
- ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) or NEF (Non-conventional Exploitation Factors) Spectral Database for surface reflectances (several hundred materials each)
- Convolved Top of Atmosphere (TOA) spectral radiances with sensor response functions to calculate MSI in-band radiances
- Can (but did not yet) add in SNR and calibration effects
- MSI in-band TOA radiances can be atmospherically corrected (with imperfect knowledge), and fed into exploitation algorithms

Radiometric Environment-Reflective

IKONOS2 - Landsat 7 Relative Spectral Response

IKONOS2 - Landsat 5 Relative Spectral Response

- Runway Concrete
- Weathered Red Brick
- Plate Glass
- Copper Roofing
- Green Paint On Aluminum
- Green Paint On Wood
- Weathered Asphalt
- Pine Needles
- Light Yellow Loamy Sand
- Gypsum
- Tap Water
- Fine Snow
- Quartzite
- Granite

Comparison of Landsat 5, Landsat 7, and IKONOS Relative Band Radiances, US76 Atmosphere, 30 Deg View Ang., 33 Deg Sun Elev., 3 Materials

	Snow	Snow	Snow	Maple	Maple	Maple	Aluminum	Aluminum	Aluminum
	L5/L7	L7/Ikonos	L5/Ikonos	L5/L7	L7/Ikonos	L5/Ikonos	L5/L7	L7/Ikonos	L5/Ikonos
Blue	1.032083	0.99209	1.02392	1.001199	0.906605	0.907692	1.032955	0.983763	1.016183
Green	1.014119	1.023165	1.037612	0.964854	0.944719	0.911516	1.018232	1.022502	1.041144
Red	0.994158	1.019947	1.013988	1.046627	0.75054	0.785536	0.993702	1.018151	1.011738
NIR	0.979239	0.999092	0.97835	0.980001	1.072103	1.050662	0.9826	1.023728	1.005915

How these simulations are useful

• Tuning Algorithms for New Sensors, e.g., setting NDVI (Normalized Difference Vegetation Index) thresholds

	Snow	Snow	Snow	Maple	Maple	Maple	Aluminum	Aluminum	Aluminum
	L5/L7	L7/Ikonos	L5/Ikonos	L5/L7	L7/Ikonos	L5/Ikonos	L5/L7	L7/Ikonos	L5/Ikonos
Blue	1.032083	0.99209	1.02392	1.001199	0.906605	0.907692	1.032955	0.983763	1.016183
Green	1.014119	1.023165	1.037612	0.964854	0.944719	0.911516	1.018232	1.022502	1.041144
Red	0.994158	1.019947	1.013988	1.046627	0.75054	0.785536	0.993702	1.018151	1.011738
NIR	0.979239	0.999092	0.97835	0.980001	1.072103	1.050662	0.9826	1.023728	1.005915

- Sensor Design, Development and Optimization
 - Band Selection to maximize material separation and SNR, and minimize spectral banding (large FPAs as in MTI [Multispectral Thermal Imager])
 - Model effects of sensor noise, calibration accuracy, GSD, other sensor artifacts, and atmospheric effects on exploitation results
- Simulate error propagation through ICA (Image Chain Analysis), post-processing, and exploitation processes
- Collection Planning
 - Enable scientists to choose sun and viewing angles,
 SNR, GSD, etc. to satisfy exploitation requirements
 - Optimize sensor collection modes to increase the probability of achieving observation objectives
 - Understand Which Sensors Are Better Suited to A Collection Than Others

Conclusions

- Developed Tools to Allow Simulation of Spectral Sensor Measurements Under a Variety of Conditions
- Simulated Sensor Measurements for a Number of Materials Under Several Sets of Atmospheric Conditions for Landsat-5, Landsat-7 and IKONOS
 - Data Shows Sensors are Very Similar for Many Conditions
 - Largest Variation is in the Red and Near-IR Bands
 - This Has Implications for Comparing NDVI Results Between Sensors
- Tools are Flexible, Extensible, and Immediately Applicable to Additional Sensors, Materials, and Atmospheric Conditions
- Future Work to Include:
 - Modeling of Higher-Order Sensor Effects
 - Effects of Spectral Calibration Errors
 - Effects of Band Misalignment
 - Modulation Transfer Function (MTF) and Point Spread Function (PSF)
 - Higher Fidelity Sensor Noise Model
 - Incorporation of MODTRAN 4.0